Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648288

RESUMO

Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.

2.
bioRxiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38405713

RESUMO

Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids show distinct shifts in bacterial 16S composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.

3.
PLoS One ; 18(10): e0292585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824485

RESUMO

Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.


Assuntos
Acetobacter , Animais , Acetobacter/genética , Lactobacillus/fisiologia , Drosophila melanogaster , Bactérias , Vitaminas/metabolismo
4.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693407

RESUMO

Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.

5.
ISME Commun ; 3(1): 78, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596312

RESUMO

Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.

6.
mSystems ; 6(6): e0122921, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726495

RESUMO

Plant-pathogenic Ralstonia spp. colonize plant xylem and cause wilt diseases on a broad range of host plants. To identify genes that promote growth of diverse Ralstonia strains in xylem sap from tomato plants, we performed genome-scale genetic screens (random barcoded transposon mutant sequencing screens [RB-TnSeq]) in three strains spanning the genetic, geographical, and physiological range of plant-pathogenic Ralstonia: Ralstonia solanacearum IBSBF1503, Ralstonia pseudosolanacearum GMI1000, and Ralstonia syzygii PSI07. Contrasting mutant fitness phenotypes in culture media versus in xylem sap suggest that Ralstonia strains are adapted to ex vivo xylem sap and that culture media impose foreign selective pressures. Although wild-type Ralstonia grew in sap and in rich medium with similar doubling times and to a similar carrying capacity, more genes were essential for growth in sap than in rich medium. Each strain required many genes associated with envelope remodeling and repair processes for full fitness in xylem sap. These genes were associated with peptidoglycan peptide formation (murI), secretion of periplasmic proteins (tatC), periplasmic protein folding (dsbA), synthesis of osmoregulated periplasmic glucans (mdoGH), and lipopolysaccharide (LPS) biosynthesis. Mutant strains with mutations in four genes had strong, sap-specific fitness defects in all strain backgrounds: murI, thiC, purU, and a lipoprotein (RSc2007). Many amino acid biosynthesis genes were required for fitness in both minimal medium and xylem sap. Multiple mutants with insertions in virulence regulators had gains of fitness in culture media and neutral fitness in sap. Our genome-scale genetic screen identified Ralstonia fitness factors that promote growth in xylem sap, an ecologically relevant condition. IMPORTANCE Traditional transposon mutagenesis genetic screens pioneered molecular plant pathology and identified core virulence traits like the type III secretion system. TnSeq approaches that leverage next-generation sequencing to rapidly quantify transposon mutant phenotypes are ushering in a new wave of biological discovery. Here, we have adapted a genome-scale approach, random barcoded transposon mutant sequencing (RB-TnSeq), to discover fitness factors that promote growth of three related bacterial strains in a common niche, tomato xylem sap. Fitness of the wild type and mutants show that Ralstonia spp. are adapted to grow well in xylem sap from their natural host plant, tomato. Our screen identified multiple sap-specific fitness factors with roles in maintaining the bacterial envelope. These factors include putative adaptations to resist plant defenses that may include antimicrobial proteins and specialized metabolites that damage bacterial membranes.

8.
Front Microbiol ; 12: 642422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841364

RESUMO

Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.

9.
Cell Rep ; 34(9): 108789, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657378

RESUMO

Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.


Assuntos
Bacteroides thetaiotaomicron/genética , Dieta , Metabolismo Energético/genética , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Adaptação Fisiológica , Compostos de Amônio/metabolismo , Animais , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Ácidos e Sais Biliares/metabolismo , Bases de Dados Genéticas , Dissacarídeos/metabolismo , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Mutação , Especificidade por Substrato , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688048

RESUMO

Phosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (Eo') of -650 mV for the PO43-/PO33- couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOMs) have remained enigmatic, as only two species have been identified. Here, metagenomic sequencing of phosphite-enriched microbial communities enabled the genome reconstruction and metabolic characterization of 21 additional DPOMs. These DPOMs spanned six classes of bacteria, including the Negativicutes, Desulfotomaculia, Synergistia, Syntrophia, Desulfobacteria, and Desulfomonilia_A Comparing the DPO genes from the genomes of enriched organisms with over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO2 reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on Earth.


Assuntos
Bactérias/metabolismo , Biodiversidade , Evolução Molecular , Fosfitos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico , Metabolismo Energético , Variação Genética , Genoma Bacteriano/genética , Microbiota , Oxirredução , Filogenia , Águas Residuárias/microbiologia
11.
ISME Commun ; 1(1): 67, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37938298

RESUMO

Sulfate analog oxyanions that function as selective metabolic inhibitors of dissimilatory sulfate reducing microorganisms (SRM) are widely used in ecological studies and industrial applications. As such, it is important to understand the mode of action and mechanisms of tolerance or adaptation to these compounds. Different oxyanions vary widely in their inhibitory potency and mechanism of inhibition, but current evidence suggests that the sulfate adenylyl transferase/ATP sulfurylase (Sat) enzyme is an important target. We heterologously expressed and purified the Sat from the model SRM, Desulfovibrio alaskensis G20. With this enzyme we determined the turnover kinetics (kcat, KM) for alternative substrates (molybdate, selenate, arsenate, monofluorophosphate, and chromate) and inhibition constants (KI) for competitive inhibitors (perchlorate, chlorate, and nitrate). These measurements enable the first quantitative comparisons of these compounds as substrates or inhibitors of a purified Sat from a respiratory sulfate reducer. We compare predicted half-maximal inhibitory concentrations (IC50) based on Sat kinetics with measured IC50 values against D. alaskensis G20 growth and discuss our results in light of known mechanisms of sensitivity or resistance to oxyanions. This analysis helps with the interpretation of recent adaptive laboratory evolution studies and illustrates the value of interpreting gene-microbe-environment interactions through the lens of enzyme kinetics.

12.
mBio ; 11(6)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293380

RESUMO

The beneficial human gut bacterium Akkermansia muciniphila provides metabolites to other members of the gut microbiota by breaking down host mucin, but most of its other metabolic functions have not been investigated. A. muciniphila strain MucT is known to use cobamides, the vitamin B12 family of cofactors with structural diversity in the lower ligand. However, A. muciniphila MucT is unable to synthesize cobamides de novo, and the specific forms that can be used by A. muciniphila have not been examined. We found that the levels of growth of A. muciniphila MucT were nearly identical with each of seven cobamides tested, in contrast to nearly all bacteria that had been studied previously. Unexpectedly, this promiscuity is due to cobamide remodeling-the removal and replacement of the lower ligand-despite the absence of the canonical remodeling enzyme CbiZ in A. muciniphila We identified a novel enzyme, CbiR, that is capable of initiating the remodeling process by hydrolyzing the phosphoribosyl bond in the nucleotide loop of cobamides. CbiR does not share similarity with other cobamide remodeling enzymes or B12-binding domains and is instead a member of the apurinic/apyrimidinic (AP) endonuclease 2 enzyme superfamily. We speculate that CbiR enables bacteria to repurpose cobamides that they cannot otherwise use in order to grow under cobamide-requiring conditions; this function was confirmed by heterologous expression of cbiR in Escherichia coli Homologs of CbiR are found in over 200 microbial taxa across 22 phyla, suggesting that many bacteria may use CbiR to gain access to the diverse cobamides present in their environment.IMPORTANCE Cobamides, comprising the vitamin B12 family of cobalt-containing cofactors, are required for metabolism in all domains of life, including most bacteria. Cobamides have structural variability in the lower ligand, and selectivity for particular cobamides has been observed in most organisms studied to date. Here, we discovered that the beneficial human gut bacterium Akkermansia muciniphila can use a diverse range of cobamides due to its ability to change the cobamide structure via a process termed cobamide remodeling. We identify and characterize the novel enzyme CbiR that is necessary for initiating the cobamide remodeling process. The discovery of this enzyme has implications for understanding the ecological role of A. muciniphila in the gut and the functions of other bacteria that produce this enzyme.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , Akkermansia/enzimologia , Akkermansia/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cromatografia Líquida de Alta Pressão , Cobamidas/química , Humanos , Hidrólise , Estrutura Molecular , Vitamina B 12/química
13.
Environ Sci Technol ; 54(24): 16119-16127, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253556

RESUMO

Sulfide accumulation in oil reservoir fluids (souring) from the activity of sulfate-reducing microorganisms (SRM) is of grave concern because of the associated health and facility failure risks. Here, we present an assessment of tungstate as a selective and potent inhibitor of SRM. Dose-response inhibitor experiments were conducted with a number of SRM isolates and enrichments at 30-80 °C and an increase in the effectiveness of tungstate treatment at higher temperatures was observed. To explore mixed inhibitor treatment modes, we tested synergy or antagonism between several inhibitors with tungstate, and found synergism between WO42- and NO2-, while additive effects were observed with ClO4- and NO3-. We also evaluated SRM inhibition by tungstate in advective upflow oil-sand-packed columns. Although 2 mM tungstate was initially sufficient to inhibit sulfidogenesis, subsequent temporal CaWO4 precipitation resulted in loss of the bioavailable inhibitor from solution and a concurrent increase in effluent sulfide. Mixing 4 mM sodium carbonate with the 2 mM tungstate was enough to promote tungstate solubility to reach inhibitory concentrations, without precipitation, and completely inhibit SRM activity. Overall, we demonstrate the effectiveness of tungstate as a potent SRM inhibitor, particularly at higher temperatures, and propose a novel carbonate-tungstate formulation for application to soured oil reservoirs.


Assuntos
Sulfatos , Compostos de Tungstênio , Campos de Petróleo e Gás , Sulfetos
14.
ISME J ; 14(8): 2034-2045, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372050

RESUMO

Respiratory and catabolic genes are differentially distributed across microbial genomes. Thus, specific carbon sources may favor different respiratory processes. We profiled the influence of 94 carbon sources on the end products of nitrate respiration in microbial enrichment cultures from diverse terrestrial environments. We found that some carbon sources consistently favor dissimilatory nitrate reduction to ammonium (DNRA/nitrate ammonification) while other carbon sources favor nitrite accumulation or denitrification. For an enrichment culture from aquatic sediment, we sequenced the genomes of the most abundant strains, matched these genomes to 16S rDNA exact sequence variants (ESVs), and used 16S rDNA amplicon sequencing to track the differential enrichment of functionally distinct ESVs on different carbon sources. We found that changes in the abundances of strains with different genetic potentials for nitrite accumulation, DNRA or denitrification were correlated with the nitrite or ammonium concentrations in the enrichment cultures recovered on different carbon sources. Specifically, we found that either L-sorbose or D-cellobiose enriched for a Klebsiella nitrite accumulator, other sugars enriched for an Escherichia nitrate ammonifier, and citrate or formate enriched for a Pseudomonas denitrifier and a Sulfurospirillum nitrate ammonifier. Our results add important nuance to the current paradigm that higher concentrations of carbon will always favor DNRA over denitrification or nitrite accumulation, and we propose that, in some cases, carbon composition can be as important as carbon concentration in determining nitrate respiratory end products. Furthermore, our approach can be extended to other environments and metabolisms to characterize how selective parameters influence microbial community composition, gene content, and function.


Assuntos
Compostos de Amônio , Nitratos , Carbono , Desnitrificação , Nitritos , Respiração
15.
ISME J ; 14(5): 1194-1206, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024948

RESUMO

A key step in the chlorine cycle is the reduction of perchlorate (ClO4-) and chlorate (ClO3-) to chloride by microbial respiratory pathways. Perchlorate-reducing bacteria and chlorate-reducing bacteria differ in that the latter cannot use perchlorate, the most oxidized chlorine compound. However, a recent study identified a bacterium with the chlorate reduction pathway dominating a community provided only perchlorate. Here we confirm a metabolic interaction between perchlorate- and chlorate-reducing bacteria and define its mechanism. Perchlorate-reducing bacteria supported the growth of chlorate-reducing bacteria to up to 90% of total cells in communities and co-cultures. Chlorate-reducing bacteria required the gene for chlorate reductase to grow in co-culture with perchlorate-reducing bacteria, demonstrating that chlorate is responsible for the interaction, not the subsequent intermediates chlorite and oxygen. Modeling of the interaction suggested that cells specialized for chlorate reduction have a competitive advantage for consuming chlorate produced from perchlorate, especially at high concentrations of perchlorate, because perchlorate and chlorate compete for a single enzyme in perchlorate-reducing cells. We conclude that perchlorate-reducing bacteria inadvertently support large populations of chlorate-reducing bacteria in a parasitic relationship through the release of the intermediate chlorate. An implication of these findings is that undetected chlorate-reducing bacteria have likely negatively impacted efforts to bioremediate perchlorate pollution for decades.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cloro/metabolismo , Simbiose/fisiologia , Bactérias/genética , Cloratos , Cloretos , Oxirredução , Oxirredutases , Percloratos
16.
mSystems ; 4(6)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848306

RESUMO

Plasmid-mediated horizontal gene transfer (HGT) is a major driver of genetic diversity in bacteria. We experimentally validated the function of a putative mercury resistance operon present on an abundant 8-kbp native plasmid found in groundwater samples without detectable levels of mercury. Phylogenetic analyses of the plasmid-encoded mercury reductases from the studied groundwater site show them to be distinct from those reported in proximal metal-contaminated sites. We synthesized the entire native plasmid and demonstrated that the plasmid was sufficient to confer functional mercury resistance in Escherichia coli Given the possibility that natural transformation is a prevalent HGT mechanism in the low-cell-density environments of groundwaters, we also assayed bacterial strains from this environment for competence. We used the native plasmid-encoded metal resistance to design a screen and identified 17 strains positive for natural transformation. We selected 2 of the positive strains along with a model bacterium to fully confirm HGT via natural transformation. From an ecological perspective, the role of the native plasmid population in providing advantageous traits combined with the microbiome's capacity to take up environmental DNA enables rapid adaptation to environmental stresses.IMPORTANCE Horizontal transfer of mobile genetic elements via natural transformation has been poorly understood in environmental microbes. Here, we confirm the functionality of a native plasmid-encoded mercury resistance operon in a model microbe and then query for the dissemination of this resistance trait via natural transformation into environmental bacterial isolates. We identified 17 strains including Gram-positive and Gram-negative bacteria to be naturally competent. These strains were able to successfully take up the plasmid DNA and obtain a clear growth advantage in the presence of mercury. Our study provides important insights into gene dissemination via natural transformation enabling rapid adaptation to dynamic stresses in groundwater environments.

17.
Front Microbiol ; 10: 654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001230

RESUMO

Hydrogen sulfide is a toxic and corrosive gas, produced by the activity of sulfate-reducing microorganisms (SRM). Owing to the environmental, economic and human-health consequences of sulfide, there is interest in developing specific inhibitors of SRM. Recent studies have identified perchlorate as a promising emerging inhibitor. The aim of this work is to quantitatively dissect the inhibitory dynamics of perchlorate. Sulfidogenic mixed continuous-flow systems were treated with perchlorate. SRM number, sulfide production and community structure were monitored pre-, during and post-treatment. The data generated was compared to a simple mathematical model, where SRM growth slows as a result of inhibition. The experimental data supports the interpretation that perchlorate largely acts to suppress SRM growth rates, rendering planktonic SRM increasingly susceptible to wash-out. Surface-attachment was identified as an important parameter preventing SRM wash-out and thus governing inhibitory dynamics. Our study confirmed the lesser depletion of surface-attached SRM as compared to planktonic SRM during perchlorate treatment. Indirect effects of perchlorate (bio-competitive exclusion of SRM by dissimilatory perchlorate-reducing bacteria, DPRB) were also assayed by amending reactors with DPRB. Indeed, low concentrations of perchlorate coupled with DRPB amendment can drive sulfide concentrations to zero. Further, inhibition in a complex community was compared to that in a pure culture, highlighting similarities and differences between the two scenarios. Finally, we quantified susceptibility to perchlorate across SRM in various culture conditions, showing that prediction of complex behavior in continuous systems from batch results is possible. This study thus provides an overview of the sensitivity of sulfidogenic communities to perchlorate, as well as mechanisms underlying these patterns.

18.
Environ Microbiol ; 21(4): 1395-1406, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30807684

RESUMO

Hydrogen sulfide produced by sulfate-reducing microorganisms (SRM) poses significant health and economic risks, particularly during oil recovery. Previous studies identified perchlorate as a specific inhibitor of SRM. However, constant inhibitor addition to natural systems results in new selective pressures. Consequently, we investigated the ability of Desulfovibrio alaskensis G20 to evolve perchlorate resistance. Serial transfers in increasing concentrations of perchlorate led to robust growth in the presence of 100 mM inhibitor. Isolated adapted strains demonstrated a threefold increase in perchlorate resistance compared to the wild-type ancestor. Whole genome sequencing revealed a single base substitution in Dde_2265, the sulfate adenylyltransferase (sat). We purified and biochemically characterized the Sat from both wild-type and adapted strains, and showed that the adapted Sat was approximately threefold more resistant to perchlorate inhibition, mirroring whole cell results. The ability of this mutation to confer resistance across other inhibitors of sulfidogenesis was also assayed. The generalizability of this mutation was confirmed in multiple evolving G20 cultures and in another SRM, D. vulgaris Hildenborough. This work demonstrates that a single nucleotide polymorphism in Sat can have a significant impact on developing perchlorate resistance and emphasizes the value of adaptive laboratory evolution for understanding microbial responses to environmental perturbations.


Assuntos
Adaptação Fisiológica , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/fisiologia , Percloratos/farmacologia , Sulfatos/metabolismo , Desulfovibrio/enzimologia , Desulfovibrio vulgaris/genética , Farmacorresistência Bacteriana/genética , Sulfeto de Hidrogênio , Mutação , Oxirredução , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
19.
mSystems ; 4(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30746495

RESUMO

Using genome-wide mutant fitness assays in diverse bacteria, we identified novel oxidative pathways for the catabolism of 2-deoxy-d-ribose and 2-deoxy-d-ribonate. We propose that deoxyribose is oxidized to deoxyribonate, oxidized to ketodeoxyribonate, and cleaved to acetyl coenzyme A (acetyl-CoA) and glyceryl-CoA. We have genetic evidence for this pathway in three genera of bacteria, and we confirmed the oxidation of deoxyribose to ketodeoxyribonate in vitro. In Pseudomonas simiae, the expression of enzymes in the pathway is induced by deoxyribose or deoxyribonate, while in Paraburkholderia bryophila and in Burkholderia phytofirmans, the pathway proceeds in parallel with the known deoxyribose 5-phosphate aldolase pathway. We identified another oxidative pathway for the catabolism of deoxyribonate, with acyl-CoA intermediates, in Klebsiella michiganensis. Of these four bacteria, only P. simiae relies entirely on an oxidative pathway to consume deoxyribose. The deoxyribose dehydrogenase of P. simiae is either nonspecific or evolved recently, as this enzyme is very similar to a novel vanillin dehydrogenase from Pseudomonas putida that we identified. So, we propose that these oxidative pathways evolved primarily to consume deoxyribonate, which is a waste product of metabolism. IMPORTANCE Deoxyribose is one of the building blocks of DNA and is released when cells die and their DNA degrades. We identified a bacterium that can grow with deoxyribose as its sole source of carbon even though its genome does not contain any of the known genes for breaking down deoxyribose. By growing many mutants of this bacterium together on deoxyribose and using DNA sequencing to measure the change in the mutants' abundance, we identified multiple protein-coding genes that are required for growth on deoxyribose. Based on the similarity of these proteins to enzymes of known function, we propose a 6-step pathway in which deoxyribose is oxidized and then cleaved. Diverse bacteria use a portion of this pathway to break down a related compound, deoxyribonate, which is a waste product of metabolism. Our study illustrates the utility of large-scale bacterial genetics to identify previously unknown metabolic pathways.

20.
ISME J ; 13(4): 937-949, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30523276

RESUMO

In many environments, toxic compounds restrict which microorganisms persist. However, in complex mixtures of inhibitory compounds, it is challenging to determine which specific compounds cause changes in abundance and prevent some microorganisms from growing. We focused on a contaminated aquifer in Oak Ridge, Tennessee, USA that has large gradients of pH and widely varying concentrations of uranium, nitrate, and many other inorganic ions. In the most contaminated wells, the microbial community is enriched in the Rhodanobacter genus. Rhodanobacter abundance is positively correlated with low pH and high concentrations of uranium and 13 other ions and we sought to determine which of these ions are selective pressures that favor the growth of Rhodanobacter over other taxa. Of these ions, low pH and high UO22+, Mn2+, Al3+, Cd2+, Zn2+, Co2+, and Ni2+ are both (a) selectively inhibitory of a Pseudomonas isolate from an uncontaminated well vs. a Rhodanobacter isolate from a contaminated well, and (b) reach toxic concentrations (for the Pseudomonas isolate) in the Rhodanobacter-dominated wells. We used mixtures of ions to simulate the groundwater conditions in the most contaminated wells and verified that few isolates aside from Rhodanobacter can tolerate these eight ions. These results clarify which ions are likely causal factors that impact the microbial community at this field site and are not merely correlated with taxonomic shifts. Furthermore, our general high-throughput approach can be applied to other environments, isolates, and conditions to systematically help identify selective pressures on microbial communities.


Assuntos
Gammaproteobacteria/metabolismo , Água Subterrânea/microbiologia , Metais/toxicidade , Microbiota , Pseudomonas/metabolismo , Biodegradação Ambiental , Gammaproteobacteria/classificação , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Água Subterrânea/química , Metais/metabolismo , Nitratos/análise , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...